Bifurcation from a Homoclinic Orbit in Partial Functional Differential Equations

نویسندگان

  • Shigui Ruan
  • Junjie Wei
  • Jianhong Wu
  • Peter Bates
  • J. WU
چکیده

We consider a family of partial functional differential equations which has a homoclinic orbit asymptotic to an isolated equilibrium point at a critical value of the parameter. Under some technical assumptions, we show that a unique stable periodic orbit bifurcates from the homoclinic orbit. Our approach follows the ideas of Šil’nikov for ordinary differential equations and of Chow and Deng for semilinear parabolic equations and retarded functional differential equations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lin’s Method and Homoclinic Bifurcations for Functional Differential Equations of Mixed Type

We extend Lin’s method for use in the setting of parameter-dependent nonlinear functional differential equations of mixed type (MFDEs). We show that the presence of M -homoclinic and M -periodic solutions that bifurcate from a prescribed homoclinic connection can be detected by studying a finite dimensional bifurcation equation. As an application, we describe the codimension two orbit-flip bifu...

متن کامل

Lorenz attractors in unfoldings of homoclinic flip bifurcations

Lorenz like attractors are known to appear in unfoldings from certain codimension two homoclinic bifurcations for differential equations in R that possess a reflectional symmetry. This includes homoclinic loops under a resonance condition and the inclination flip homoclinic loops. We show that Lorenz like attractors also appear in the third possible codimension two homoclinic bifurcation (for h...

متن کامل

Global pathfollowing of homoclinic orbits in two-parameter ows

The main goal of this paper is a global continuation theorem for homoclinic solutions of autonomous ordinary di erential equations with two real parameters. In one-parameter ows, Hopf bifurcation serves as a starting point for global paths of periodic orbits. B-points, alias Arnol'd-Bogdanov-Takens points, play an analogous role for paths of homoclinic orbits in two-parameter ows. In fact, a pa...

متن کامل

A Numerical Bifurcation Function for Homoclinic Orbits

We present a numerical method to locate periodic orbits near homoclinic orbits. Using a method of X.-B. Lin and solutions of the adjoint variational equation, we get a bifurcation function for periodic orbits whose period is asymptotic to innnity on approaching a homoclinic orbit. As a bonus, a linear predictor for continuation of the homoclinic orbit is easily available. Numerical approximatio...

متن کامل

Showcase of Blue Sky Catastrophes

Let a system of differential equations possess a saddle-node periodic orbit such that every orbit in its unstable manifold is homoclinic, i.e. the unstable manifold is a subset of the (global) stable manifold. We study several bifurcation cases where the splitting of such a homoclinic connection causes the Blue Sky Catastrophe, including the onset of complex dynamics. The birth of an invariant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003